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ABSTRACT

A procedure for the numerical approximation of the Cauchy problem for
the following linear parabolic partial differential equation is defined:
u, - (p(x)ux)x+q(x)u= 6, =<1, 0<tx<? nfot)=tf (),
0 < £ < W ullt) = fz(t), 0<t <Py p(O)ux(O,t) = g(t),
O<ty<t<T |ulxt)| <M, 0<x<l, 0<t<T.
The procedure involves Galerkin type numerical methods for related parabolic
initial boundary-value problems and a linear programming problem. Explicit
a priori error estimates are presented for the entire discrete procedure
when the data fl'f2’ and g are known only approximately.

AMS (MOS) Subject Classifications: 65M30, 65N30

Key Words: Cauchy problem, error estimates, improperly posed problem.
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’

(15 DAREAT-75-C-PPay; “DACAT— " 7 |

Sponsored by the United States Army under Contract Numbers DAAG29-75-C-0024 and

DAAG29-78-G-0161. This material is based upon work supported by the National 7
Science Foundation under Grant Numbers MCS78-09525 and MCS78- 02737.9\2/ Y Ag)
.7‘*’-

|
|
|

|
4

r




r#=1—=-—-—l————-—“

"\ SIGNIF ICANCE AND EXPLANATION
\

\ In many physical problems in heat conduction, it is impossible to obtain
an initial temperature distribution within a material. In many of these
cases, in order to obtain approximations of the temperature within the body,
one must rely entirely upon data which can be measured at the boundary.

An additional problem is that these boundary data are only accurate to within
some prescribed measurement errors.,

The purpose of this paper is to define a procedure for numerically
approximating the solution of one such heat flow problem and to present

explicit error estimates for the numerical procedure. 2 priori error

est imates are presented when the data are known only approximately.

A

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authors of this report.




NUMERICAL APPROX IMATION OF A CAUCHY PROBLEM
FOR A PARABOLIC PARTIAL DIFFERENTIAL EQUATION

Richard E. Ewing and Richard S. Falk
1. Introduction.
Consider the numerical approximation of the solution of the following Cauchy problem
for a linear parabolic partial differential equation.
Problem (P): Find a function u = u(x,t) satisfying

Ju 9 Jdu
a)a_t-a_x(P(x)a_x)+q(X)“=°' s x <1, gi<t =T

p) u(0,t) = fl(t) (R B
1.1) ) u(l,e) = £,(t), Drets T
Ju
d) p(0) % (o,t) = g(t), 0 < toit SVP .
e) |ulx,t)| <M, O xes e G .
where the data fl, f2’ and g are known only approximately as f;,f;, and g* such that
- *
a) |l fl flll (0,11 gy
- *|
(1.2) b) Ilf2 f2II {0,T1 <€t
- g¥ <
c) llg - g*l [torT] <5 ;
with € > 0 and where for any function f = f(t)
(1.3) Il £ =  sup £y ].

adl ©, ey

We assume that the following hypotheses are satisfied:
(H1) fl,fz,g,p, and q are such that a classical solution u to (1.1) exists.
(H2) The functions p, p' and q are uniformly Holder continuous in 0 <x<1
and satisfy

a) 0 < p, < p(x) < p* 4

b) 0 <q, <q(x) <

A
e}
*

o) [p')| <p'*.

(H3) £ and £ are continuously differentiable and a constant 1& exists such

1 2
that
Ilflll (0,1} + |l fill (0,1 + |l f2|| (0,71 + |l féll (0,1 + ligll (£, T] <K .
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(H4) For the Sturm-Liouville problem with eigenvalues and corresponding normalized
eigenfunctions, satisfying
] . - + =
a) (ppn) qwn Anwn 0L 0 <x <31,
b) ¢ (0) =¢ (1) =0,
n n
there exists a d > 0 such that
d = ur\lf()\nﬂ = An).
(HS5) The approximations (1.2) hold. 1In addition

. *1

a) Ilfl + fl "[O,T] < €
¥ - *

b) llf2 f2 Il {0,T] <€t

(H6) If M > 0 is the constant given in (l.l.e), we have

a) HEl ooy <M,

B) e g gy <K
*

) NEM o g <M
*|

Q) NEP oy SM .

Without the extra assumption (l.l.e), the Cauchy problem (l.1l.a-d) is not well-
posed in the sense of Hadamard [3,4,5,6,7,8,13) since the solution does not depend contin-
uously upon the data. However, for the problem as stated with hyy “theses (H1)-(H6)
satisfied, a continuous dependence result was obtained in [6].

Many studies of the continuous dependence of the Cauchy problem for various para-
bolic problems have appeared in the literature [3-8. 13]. Other formulations in terms of
control problems have also appeared in the control theory literature ([11, 12, 14]. 1In [7]
Ginsberg considered numerical approximation of the Cauchy problem for the heat equation
u, = u with g(t) = 0 in (l.l.e) by expanding the data in Fourier series and estimating
Fourier coefficients. In [3,4] Cannon and Douglas outlined rumerical procedures for various
Cauchy problems for the heat equation by reducing the probi ms to mathematical programming
techniques. In [5] Cannon and one of the authors presented a direct numerical method for a
slightly different Cauchy problem for the heat equation in which a Taylor series expansion
for the data is numerically approximated. In [6] a numerical scheme requiring numerical
approximation of several unknown eigenvalues and eigenfunctions was presented without

explicit error estimates for the approximations. In this paper the numerical schemes

“Fw




involve only solution of linear parabolic initial boundary-value problems and a simple
linear programming problem. More importantly, explicit a priori error estimates for the
entire procedure are presented.

In Section 2, basic notation is presented and Problem (P) is reduced by linearity
into two simple initial boundary-value problems and an optimization problem. In Section 3,
Galerkin type numerical schemes are defined for the initial boundary-value problems and
a linear programming problem is formulated to solve the optimization problem. Several
basic lemmas needed to prove the main result are stated in Section 4. Then a priori error

estimates for obtaining approximations to (1.1) with approximate data satisfying (1.2) are

stated and proved. Finally proofs of two of the technical lemmas are given.




2. Preliminaries.
we shall first define some of the notations used for various norms throughout the
paper. Recall that in Section 1 we used the notation that, for any function f = f(t) ,

Il £l 3 sup |£eey].
(a,b) axE<h

For functions ¢ = y(x) defined on (0,1), we shall denote by |w|m the norm Iy I n
501

and by e (m a positive integer) the usual Sobolev space of functions with norm
ERl
ax?

For real s , we further denote by Hs the Sobolev space ws’2 of real-valued functions

lo] =

m,®

©

j=0

defined on (0,1) and by | \blls its corresponding norm. We note that L2 (0,1) will be

denoted by HO and lyll 5 by llwllo. For definitions of the other spaces, we refer

E(0:3)
the reader to [10].

Also, for X a normed space with norm II-IIx and u:[a,b] » X , we define

ha?, = Phac,on ae
L (a,b;X) a
and

hall = sup ||u(-,t)||x
L (a,bX) astEgb

Finally, for convenience, we define a bilinear form
alu,v) = (p(-)ux,vx) + (q(*)u,v) ,
where (+,+) denotes the L2 (0,1) inner product.
We shall next present a reformulation of Problem (P) on which our approximation
scheme will be based. We first define a function w satisfying the initial boundary

value problem

w 3 aw
a) E-K(pﬁ)‘FQW—F(xrt)' 0 <z <1, G=rt s T
b) w(o,t) =0, (o885 -l
(2.1)
) wllt) =0, O0<ts<T,
d) w(x,0) =0 , 2<% <€ ;
where
(2.2) Fi(x,t) = -(l-x)fi(t) . xfé(t) + p'(x)[fz(t) - fl(t)] - q((l-x)fl(t) + xfz(t)].




7

Also, for each V¥ € L2(0,1), we define a function z satisfying the initial boundary

value problem:

Bz‘b 3 Bzw

a) —a—t—-g;(p—a-;)irqzw=o, 0<x <1, (oS8 ST
b) z‘v(o,t)=0, Qs <,
2.3) ‘9
e) 2"(1,t) = 0 , s T,
d) zw(x,0)=w, BiLe T S G

Using M fram (1.1.4), let
K=o ec®0,11: fol <M ana ¢(0) = £(0), v(1) = £,(0)}.
We can now reformulate Problem (P) using (2.1)-(2.3) and linearity of the operator in (1.1)
as follows:

Find ¢ (corresponding to u(x,0) from (1.1)) with ¢ ¢ K such that

9-r
3z o " w _ .
o p (0) s 0,t) = g(t) - p(0) % (0,t) - p(0) lfz(t) fl(t)]
= G(t)
where
(2.5) r(x) = (1—x)fl(0) + x£,(0) .

To see that this reformulation is equivalent to Problem (P), observe that, using
linearity, the function

o w e’ # (1) £, (£) + X, (£)

satisfies
O N T & Egs s g
& ot ax P x q 4 % Z -
» wo,e) =), o<t <,

2.6) o wWa,e =gm, o<t T,
a) w0 = ¥+ AXE O + x£,), 0<x <1,

e) p(0uY(0,t) = p(OIw (0,t) + p(O)2V(0,8) + POIIE, (6) - £, (E)], & <t T
Choosing ¢ = ¢~-r, we see that “w-r solves problem (P) provided we can find a ¢ satis-
fying (2.4). (We note that since [f (t)| <M and l£5(6)| <M, 0 <t < T, the maximum
principle implies that the condition I"Lu < M is equivalent to requiring that

lotx,e)| <¥;, for O2x<l, O0<t<T)

aB




Using this notation, we can now state a form of the continuous dependence result

(proved in (6]) which we shall need later in the derivation of the error estimates.

Lemma 1: Under hypotheses (Hl)-(H6), there exist computable constants cl and vy
(0 <y <1) such that for all y with [y|_ <m,
Y v Y
(2.7) iz _ w € lz2(0, )l '
I (to,T;wl' ) I X [to,T]

where z' is the solution of (2.3).

"
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3. Description of the Numerical Approximations.

In this section we consider the problem of numerically approximating the sclution of
(1.1) (or equivalently, its reformulation described in Section 2) subject to the restriction
(1.2). The restriction (l1.2) comes from the fact that data measurement error is, in general,
accurate only to within some measurement tolerance € We denote by F* the function
in (2.2), by f{ and f; respectively. We further

obtained by replacing fl and f2,

define w* as the solution of (2.1) with F replaced by the F* defined above,

€3.1) E%(x) = (l—x)fi‘(u) + xfE(O)
and
; £ awr .
(3-2) G*(t) = g*(t) - p(O} T (e} = p(O)[f‘z*(t) = f;(t)] .

We note here that from (H5), (H6), (2.5), and (3.1) we have
a) !rxv‘/ <M

[zt =V I i

c) lie=x*ll =< [£=-r¥*|
U ki
I - - % - Fk
max {1 x)!fl(m £2(0) | + x|£, (@ fz(o)l}
(6] < RS 1
SN

Since the data is only known approximately as described above, we now define an

approximation scheme based on a finite dimensional analogue of equation (2.4) with G

replaced by G* from (3.2). We first describe schemes for obtaining approximations to

w and z°' (assuming ¢ 1s known).
123
Let s’] denote the space of continuous piecewise polynomials of degree B-1

defined on a uniform mesh of width h on [0,1] and vanishingat x =0 and x = 1.

We shall consider a family of such spaces for 0 < h <1 . We assume each space in this
family satisfies the following so-called "inverse assumptions": u € Sh implies that for
some constant Cz,

=)
a) ‘u"l'm (_~C2h |u|m,

(3.4)
=1/2
|ul < : .
by fuj, = C2 h Ilullo
We also assume that our test spaces SS satisfy the following approximation assumptions:
BE " 4 S}'“' and Ihu is the interpolate of wu in Ss . then for some constant C3 ¢




a) lu - ZLull < c. vl _, a0
B -
(3.5) | 8
I
b) hull,oo _<_C3 |u|1’m 1

Let k >0 be the step size in time, N, = T/k € Z , t® = nk , and ¢n=;(t”).

We shall present a Crank-Nicolson-Galerkin approximation for w , the solution of (2.1)-(2.2).
4

Define W : {0 = tortyreeeity = T} -+ S, by
P 1
W -W W+ W
+1 + 1
(3.6) (L—i—",v] +a(il'—2-——n-, V)= F(, @+ P,V

for all V ¢ s:j and n = 0,1,...,NT—1, with w0 =0, where af(-+,*) 1is defined in
Section 2. We similarly define w:; to be the analogous approximation to w*(nk) given
by (2.1)-(2.2) with F replaced by F*.

The scheme defined in (3.6) is known to have a time-truncation error of the order

k2. We shall use another 0(k2) time~stepping method with better stability properties but

greater work estimates to approximate 2z , the solution of (2.3) with { assumed known.

) v, i - 2
Define Z': {0 = tO’tl""'tNT T} > Sh by
qu:+a. i Zx‘f 1}
( A WV ) + a (Zn+a'V) =0
(3.7)
Z“p - Z‘p
n+l n (1-a) v
(——-——ak ,v) + a(z +l,v) = o a(Zn+a,v) y
with
(3.8) @) = v
for all vesi where a=1-/35-.

We note that since each of the time stepping schemes defined above have O(k2)
time-discretization error but different spacial orders of approximation, we shall use the
time step k to tie the two approximations together. Thus k will be the same in each
of (3.6) and (3.7). We shall then see that in order to balance the temporal and spatial

discretization errors in each problem separately, we shall let h = k in the definition

of Z and h =kl/2

1 in the definition of W .

A, v
Let N, = lto/kﬂ+ 1 where [r], for r ¢ R, is the greatest integer less than r

Using the above definitions, we can now define an approximate problem as follows:

Ao




Problem (PA): Find $y € Kh such that

(3.9) Jcph) = inf J(wh) '
wheKh
where

2 :
a) K, =ley es:lel, <M ¢ (0) = £2(0), and ¢ (1) = £5(0)},

(3.10)

= * - * -

b) I (Y ) "=No??)""“r|g (nk) - p(0) [£5(nk) - £%(nk)]
e
] 9 h
- p(0) 5= Wk (0) - p(0) 52 ) ].
We then take as our approxiamtion to u(t) at t = nk the function
wh—r*

= - * *

(3 11L) Un W;"l + Zn + (1 x)fl(nk) + xf2 (nk)

We now show how Problem (PA) can be solved by linear programming.

et h be such that H=1/h ¢ Z and

H-1
= * *
(3.12) Yy '2 ;0 + £f(0e + £2(0)0, ,
i=1
where
0 ¢ x < (i-1)h,
x/h - (i-1), (i-1)h < x < dh ,
(3.13) Oi =
1+i - x/h , ih < x < (i+l)h,
0 v x > (i+l)h .

Note that the constraint Iwhlm <M is equivalent to Ici1 <M, i=1,...,H-1 and

|f;(0)l <M, i=1,2. Then, by linearity,

Yo =E*: H=1 [ £f*(0)¢ +£*(0)
3 h » i SOl oAl OEesE 3 r*
(3.14) e L (0) = izl S 5 %, O 4502 © -3- 2z (0
Hence Problem (PA) can be written as:
Find d= (Cl,... ’CH-l) minimizing A subject to the constraints
a) -Mf_Cif_M, i=1,...,8-1 , and
: 3
- * - * - * - _
(3.15) b) A < g*(nk) p(O)[f2 (nk) fl(nk)] p(0) % W;(O)
H-1 [ £X(0)0 . +£%X(0) 0
3 > 3 3 1 0 2 H e
p(0) [ izl C 5 % 10) £ =2 © - 3=z (0)]
iAI n=N0,...,NT.

-




4. Main Results.

In order to derive our main result, we shall need several lemmas about the regularity
and approximation of the solutions of (2.1)-(2.2) and (2.3) and the stability of problem
(3.6). We shall now state these lemmas. The first lemma relates the smoothness of the |
solution of (2.3) to its initial smoothness and can be found in [2].

Lemma 2: Let z¥ be the solution of problem (2.3). Then for O < tO <t and s >0,

there exists a constant C4 such that

v -s/2 “
4. . t "
(4.1) z™ (¢ ,t)"s 104 o Ilwll0 i
Lemma 3: (c.f. wheeler [15]). Let w be the solution of (2.1)-(2.2) and {wn) be its li
- 3 : @ 4, aw 2 4 i
approximation given by (3.6). If we L (0,T;W ' ), 3¢ € L (0,T;H), and |
|
3w 2 0 .
G L (0,T;H ), then there are constants C4 and k0 > 0 such that for all 0 < k < ko, |
at |
we have for n = 0""’NT' '
4 ) 3 53 1
w w

(4.2) |w(e,nk) - W | <c, {n (wl +ll= | 1+ X lIl—=I B

i AL oW ) O £ o, ) at3 12 0,1;8% ’

We remark that sufficient conditions for w to have the regularity required by

lemma 3 are that

2 0
a) Fip €L (0,T;H")
4.3) b) F(x,0) =0 for x=0 and x =1, and
9 9F (x,0) _ 2 -
c) T (p e qF (x,0) + Ft(x,o) =0, for x=90,1,

where F is given in (2.2). These are natural compatibility assumptions on the data whose
satisfactions are assumed with the hypothesis of the existence of a sufficiently smooth
classical solution of the problem (1.1). When (4.3) is satisfied, we have by standard

a priori estimates that for n = 0""'NT'

(4.4) |w(e,nk) - wn|m < Cs{h: + ¥}

where C5 depends only upon the data f1'f2’ p, and q . Using the inverse properties (3.4)

satisfied by the subspace S: , we easily obtain the following result by a standard technique.

&
Corollary (3.1). There exists a constant C6 such that for n = O,...,l\l,r ¢
(o
6 4 2
. - — + 5
(4.5) |w(+,nk) wnll'm < By th) + k]

Cel
Our next lemma allows us to obtain L -estimates for the error in approximation of

(2.3) by (3.7) for times bounded away from t = 0 (i.e. 0 < t_ < t).

=10~




4 Lemma 4: (c.f. Baker, et. al [1]). Let 2zY be the solution of (2.3) and {z:} the
3 approximation given by (3.7). Then there exists constants C7 = C7 (to) such that for

n = .‘\lx, ,*.‘,1‘, |
; (4.6) 2" (=nk) - 2 | ;(‘7{h2 + kz)llullo.

. ] " 2 i
Again, using our inverse assumptions on Sh, we obtain

Corollary (4.1_)‘. There exists a constant C8 such that for n = NO""'NT'
(&4
Y ¥ 8 2 2
4.7) |z" (s ,nk) - 2Z° < = il .
( | nk) n|l,u°— h [h +k]||1,:l|o

We shall also require a special stability result for the approximation scheme (3.6).

Since the proof of the following lemma is quite technical, we shall defer it until after
the proof of our main result.

Lemma 5. Let iwn' be the solution of (3.6). If for some constant T 0 >0 , we restrict
k and hl such that khi o 10 , then there is a constant C9 such that

(4.8) Wl . =c el |
SRR L (0,T:;R ). |

The last lemma which we shall state gives an a priori estimate for the linear pro-
gramming problem defined in (3.15). Again the proof of this lemma will be deferred until

after the proof of our main result.

Lemma 6. let ;h ¢ "'h be the solution of the linear programming problem (3.15). Then |
there exists a constant Cl(’ such that |
3 L |
gy T | &% -5 (6 * —f* - — - —— =
(4.9) ’ max ‘{{g (nk) -p (0) [£3 (nk) =£¥ (k) 1 -p (0) = W (0)-p (0) 3 2 (0) | T(ey)
= e e gl
0’ oy

c. {e. + h+ [hi + ;<2]/h1 + [h2 + k2]/h}.

We are now in a position to state our major result and prove it using Lemmas 1-6.
Theorem 1: Let u be the solution of Problem (P) and {Un} be the approximation defined

by Problem (PK) and (3.11). Suppose that hypotheses (Hl)-(H6) are satisfied, that F

(defined by (2.2)) satisfies the regularity conditons (4.3) and that ¢ = u(x,0) satisfies
u;;,l 4 ﬁ‘l for some constant Cll >0 . If the mesh sizes k,h, and hl are chosen to
2
satisfy k = h = h;, then there exists a constant C12 which is independent of k such ]
that for n = "4','1 e rNTr ]
k1" !
0 I+ ’ N < +
(4.10) (*.nk) ‘nll,'» = Clzifo ]
-11-




g

where € and Y are the constants defined by (H5) and (2.7) respectively.

0
Proof : In the reformulation of problem (P), we wrote the solution as
(4.11) an= Tawe T4 Ax)£, () + xE, (£) .
From (3.11) we have
wh-r*
(4.12) U =W+ 2 + (1-x)£* (nk) + xf*(nk).
n n n ;) 2

Using the triangle inequality, we obtain

+ [wn - w|

|u(e,nk) - Unlllmf_|w(-,nk) = 4 L

wnll:“’

(4.13) o \Ph—r*
-, i : 5 ;
+ |2" " (+,nk) z, l1,m + 2|fl(nk) fI(nk)I g 2|f2 (nk) ~ £3(nk) |.

The first term on the right of (4.13) is bounded using (4.5) as follows
4 2

(4.14) |w(e,nk) - wnll'w S Celh + K1/ .

Fram (HS5), we see that

(4.15) |£, k) -£3 (k) | + |£, (k) -£3 (k) | < 2¢ .

Since k = hi by hypothesis, we can use Lemma 5, (2.2) and (H5) to bound the second term

on the right side of (4.13). We obtain
Woo- w| < c_lIF-F*l
RS L”(0,7;K°)
(4.16) :
< -
<cC EO

In order to treat the third term on the right of (4.13) we use the triangle inequality,

|2°7% (- ,nk) - z:h_r*lllw
ke = Izw-r(',nk) = zwh-r*(-,nk)ll'm + z¢h-r*(.,nk) - Z: ok 3,
Using (3.3.b), {3.10.a), and (4.7) we have for n = NO""'NT »

Izw —r*(',nk) - zih-tﬁlllc° < ch—s 2 + kzllwh-r*llo
(4.18) s CTB (he + k2]{lwh£® + [z*| }

_<_C[h2 + k2]/h v
Combining the above estimates, we obtain

4 Z 2 2
(4.19) IEEBES = Unll,m < cley + [hy + K'1/h) + [h° + K'1/h}

¢

-rt
+ 122 (k) - 2

h ("nk)Jl,“’ .

-12-




In order to estimate the last term on the right of (4.19), we shall use the cont inuous
dependence result from (2.7). We obtain

¢, ~x* ¢, ~-r*

@=r h % ¥-r Do MR X
(4.20) |2" " (+,nk) - z ( ,nk)lllm 2cllz, T, -z 0, )l [t,.T)

For any function y(t) € wz,w[to',”' we ncw define Iky to be the piecewise linear inter-

polate of y on the time mesh of width k . Then we obtain (using properties of a linear

interpolate)
P, -r*
¢-r h =
Ilzx (0,-)-zx 0, )l [to'T]
e @y ~r*
$=-x P-x h
(4.21) illzx (0,+) - Ikzx o, )l + IIIkzx (0,°) - z, 0, )l

[to,'l‘l [tO,T]

¥ -x vh-r*
+ H=NOT‘?’-‘-:NT ]zx O,nk) -z (0,nk) | .

By standard results in approximation theory, the ‘first two terms on the right of (4.21) are
bounded by

Y, -r*

(4.22) c k2220, )l +1z2 (0,

1.
xtt [ty T] xtt [ty Tl

Next, differentiating equation (2.3.a) and using Lemma 2 and the Sobolev lemma, we obtain

for any WGHO,

v

xte (O

P <cie¥e o,

[o,T]
(4.23)

<clylh , for Bk, sE<T

Combining the above estimates and using (3.3) and (3.10.a) to see that ll¢-t||o < 2M and

II‘ﬁh-r"ll0 < 2M , we get

¢, -r*
Y=-x h
Ilzx 0,+) - z, 0, )l [to'T]

2 ¢-r i
SCk ¥ max sz (0,nk) - zx (O,nk)(
(4.24) n=No""'NT
3 ¢-r T e
< Gk 4 max I—ax 2 (0mk) - 5= 2

n=N0,...,NT

(o) |

0, ~x* ¥, -r*
A
¢ max I 2" (© - %z B to.mn].

n=N°,. s s N,

Ix
b




Using (3.3), (3.10), and (4.7) we estimate the last term on the right of (4.24) by

¢y o " S
h h 8
l-aa;- zn (0) - ?;z (0,nk) | < - [h2 + kzlllvh—r‘uo

n=N ,...,NT

(4.25)
<cm? + ¥/ .

Next, using (2.4) and the triangle inequality, we see that the second term on the right of

(4.24) is bounded by

3 _¢-r 3 v?h-r"
max ]5—-2 (O,nk) - — 2 (0) |
Bl = -

OI ’ T

< N jaink) o ook - e (k%f(nml—-i-;Hq'OH

T p(0) 9x ' 2> 1 3x n X
n=N_,...,N

0 T
max X w 3
in=N0""’NT {p(o) |g(nk) - g*mk)| + |—3x (0,nk) - == wn(o)l
9 9

+] 35 W, 0) = G W) | + |£, (k) -£3 (k) | + |£, (nk)-£¥ (nk) | }

+ max st |g*(nk) - p(0) -a—w"(O) - p(0) [£* (nk) -£* (nk) ]
- p (0) 3% 'n p 2 "1
n=N_,...,N

(o] T
N ]
- p(0) 3% znh (0) |

= t:erm1 + term, .

Using (H5), (4.5), and (4.16) we can bound the first term on the right of (4.26). We
obtain
(4.27) term, < c{e_+ [h? + K1/, }

: g S SEy 1
We note fram (3.9) and (3.10) that the second term on the right of (4.26) is just J(v’h)
from our Problem (PA) . We then use Lemma 6 to obtain the a priori estimate
term, = J(wh)/p(o)

(4.28)
SColegth# [h: + k2]/h1 + 2+l

Then combining (4.19), (4.20), and (4.24)-(4.28), we see that for n = N

ore
. $. o2 2 o2y
(4.29) fuCamk) = u |y ccleg+ b+ thy + X 0/m + 00+ x1/m)' .




+ 3%

Then choosing h k and 'nl = Kk , we obtain
@.30) uf* k) - U | < cfe. + k)Y
' n 1'.» — 0
for n Noreoo ol which was to be proved. ]

o
Next, assume that the linear programming problem described in Section 3 is solved to

within the tolerance

J (;h) = \)1

for some 3 >0 Replacing the estimate (4.28) by the above inequality, we obtain the

following error estimate.
H-1
Corollary Tl:  Assume the hypotheses of Theorem 1 are satisfied. If w}'; = z C; Oi '
i=1
the solution of the linear programming problem defined by (3.15), satisfies J(\a;) <0y

then for n = N ..N we have for some constant C >0

3 ke T 13

lu(e,nk) - U | te. &+ 01"
n j |

1,0 = C13'%

We chall finally give proofs for Lemmas 5 and 6 which were stated previously.
Proof of Lemma 5: To prove this lemma we will need to make use of results from elliptic
reqularity theory, spectral theory in Hilbert spaces, and the theory of interpolation
spaces. We shall assume the reader is familiar with these concepts, since to provide
detalled explanations would unduly lengthen the proof. In order to simplify the exposi-

tion, we first introduce some additional notation. Let Q be the solution operator for

the two point boundary value problem

: ,
a) -;(p%)+qy=f, 0<x <1,
(4.31) b) y(@) = 0 ,
c) y(1) =0 .

’ Qf Let be the solution operator for the Galerkin approximation
(1.8, y DE) . £ Qh

X
of (4.31). Then vy = Q f is defined by
h h.
1 ) 3
(4.32) ( v, ) e ) v, @ 54
5 aly, o = ~ ¥ #
hl hl hl hl hl
Now, set L = Q_l (i.e., the inverse of on S4 ). For normed spaces X and Y,
By oy By -
let L (X,Y) denote the space of linear operators from X to Y and | .l

L(X,Y) the

(operator) norm in this space. We shall first establish that

7/8
| | <
(4.33) "wn‘l,m—C"th wnll0 .




We note that

W = L W
l n'l,w ,th hl nll,m
sl -on, vl *ley wl,
p 1 p |
(4.34) l | l [
<o W -IL oL w| _+|I QL W -9 1
hl th n hl h1 n'l, h1 hl n th n'l,
+ |o L wn[l,m
3
where Ih is the interpolation operatcr mapping Hé -+ S: . By the inverse properties of
1 1
sh given in (3.4), we see that
p 4
lo. L. w -1 orn w/| _
hl hl n hl rh By
=-3/2
(4.35) Seh g, & W -L OL w|
1 hl hl n hl hl n o
e h;3/2{llQh L W o-oL Wi +loL w - I oL wllo}. |
TR T L 1 ; =

Using standard properties of the Galerkin approximation, we note that the first term on the

right of (4.35) can be estimated as follows:

-3/2 -3/2.7/4
(4.36) h o -or  wll_ <c h’'Mor wl 5
1 hy h, 'm0 1 h 'n 7/4
Also, using (3.5.a), we obtain
-3/2 - -3/2.7/4
(4.37) h1 [[e) th w Ith th wnll0 sC h1 h1 o th wnll 778

Then, using (3.5.b) and the Scbolev lemma, we see that

x w - W
| R B hilg o £ ’Ihl s Wlpat o " " he

(4.38) 2+ 1 lo th W |

< c lig th "n"7/4 .
We then collect terms in the above inequalities and use a standard a priori estimate for

/4

elliptic problems (i.e. Q € I(H_l i H7/4) [{10]) to obtain

[W,l),. <cle th ¥l /e

(4.39)
< Cll Wl '
- th n -1/4

where the last norm is defined below in (4.41). Then, in order to obtain (4.33) we need

-16-
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only show that

7/8
(4.40) IILh wn"-l/4 gclth Wnll0 .
;i | 1
2 4 2 . - . 4 .
Let P:L - Sh be the L~ projection operator into S . Note that L is self-
h h
3 1 1
s 1/8 4
adjoint, so I'h is also self-adjoint. Then we see that
: L w,w
hl n
e, Wl Z sup —————————
hl n -1/4 vec Ilv"l/4
(th Wn.PV)
= sup, —Ta
v € Co 1/4
(4.41) /8 1/8
(th Wn, th Pv)
B i T~
v € C0 1/4
1/8
ol N%I v,
< il w il sup .
th e e € P
Next, since we have that
(4.42) hey/? evl = taev, 12 < dievi
1 0 - 1
and
0
(4.43) IIth Pvll0 ilIPvﬂo v
we can use an interpolation theorem due to Heinz [9] (compare also with [10]) to establish
that
1/8
(4.44) "I‘n Pv!l0 f_levillM -

1
Then, since approximation properties of s: yield
1

(4.45) el < clivi

1/4 1/4 '
we can combine (4.41), (4.44) and (4.45) to obtain
7/8
(4.46) n:.hl wn“-1/4 id“hl wi

Now, to establish (4.8) we solve a set of fitst'order difference equations arising from

(3.6) to obtain

n-1 j
K -1 k
wo=k } f(I1+=L ] [I-3L 1 .
n j=0 { 2 hl 2 hl}

1

(4.47)

k -
.[1+7Lh1] PF("["‘%-j]k) :

Sl




el - catida T

Then we see that

7/8 7/8 X S 1
lth W"‘H0 < IIxL [1I + 3 Lh 1 PF(*,[n - 3 ]k)llo
1 1 1
n-1
(4.48) ) IILZ/B(II+§-Lh]'llx—;-nhl}Ju»,zELh]'lll .
=1 M iy 1 1 L L,uD)

¥ L
IBF (s, tn - 5 - 1Kl .

For the first term on the right of (4.48), we obtain
7/8 1

k -
Ik [T + = ]
", 7

2778k )7/81.}71’8 (r+ 51 0™ IBF (, In - S3)I
1 b w9 .
(4.49) "

7/8
7/8,1/8 {A } 1
< 3 k sup — (IIPF(+, [n - k)l
= sches LI*X 2 0

j
2 lpF (s, [n - flk)"o (for k < 2).

3
PF(+,[n - Elk)ll0

1A

1A

Since it is known that the eigenvalues A of L~ satisfy 0 <A, < Boh;2 .
1

ratio restriction kh12 % T contained in the statement of Lemma 5 implies that
(4.50) I\i < Boto/k 5
From (1], we know that there exist constants C0 and KO such that for j =1,2,...

B. T
and 0O < ) = 23 ’

1 - -'2‘- WL -C, ;— A3
(4.50) < K e .

T 7Y

b
-“€x /8 .

Then, since clearly e X is bounded for all x > 0 , we use (4.50) to see that

7/8 k -1 k j k -1,
I {lx + = 3§ D e s 1Vt + = 11
%1 2 th 2 “hl 2 th £ &1

k 3
< sup, 1«22 \7/8
Q<A< OkO 1+§)‘ 1+§)‘
k
% 2™ 18
(4.51) = BB s 1 A
00
Oeas—==
K. k... 1/8
-C. A =\
< s, , ecozn (23)7/8
gexe oko (3k/2)
-7/8 .
C12 (3k/2)
-18 -
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Thus combining the above estimates, we have

- n-1 (e
hy/® Wl 20pE (e tn = 20N+ ieel o ¥ I —Hom
5 L (0,T;H) =1 (jk/2)
- 1
< Ippl = f .
L (0,T;H) 7/8 7/e
(4.52)
< IeRl o (2% 7}3 /8y J
L (0,T:H )
< cIrl s o -
L (0,T:H")
Finally, combining (4.39), (4.46) and (4.52) proves Lemma S . 1

Proof of lLemma 6: From (HS5), (3.9), (3.10), (4.5) and (4.16) we see that for all wh € Kh

Jley) <3

b,
3 2 el eyt
= max |g*(nk)—p(0)[f5(nk) £] (X)) -p (0) 3= W* (0)-p (0) 7 2, ()|
n=N_, .« yN
(6] T
< max {|g* (nk) -g(nk) | + p(O)If;(nk)-fz (nk)| + p(O)[fI(nk)-fl(nk)|
n=NO,...,NT

) 9 3 ow
+ p(o) | =W = M @]+ p(O)lH W (0) - 5= (0,nk)|

Cptplat @) - == 2% 0,05 | 3
p IE)x n Ix !

L <y
h 3 p-
< cleg+ ] + K)m o+ max  p© | 2" @ - =Tk
n = NO,...,NT
Now
P
3 h 3 _o-r
]ax z (0) - 5— 27" (0,nk) |
(4.54)
Y, —r* =g 8 3 Yotr-r*
ez @ -2 | 4 | ©.,nk) .
From (4.7), (3.3), and (3.10) we see that for n = NO""'NT ¥
) P, =r* Y, =r* C
3 'h 3 'h 8 2 i
'E z (0 = =% (0,nk)| < o (07 + KTy e

< cm’ + i/,
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Next using the Sobolev lemma, Lemma 2, and (3.3.c), we obtain for n = N ""'NT’ and for
any lbk € Kh °
Y, ~p+r-r* Y, ~p+r-r*

9 h
I3 2 (0,nk)| < llz I,

(4.56)

A

- -r* 3
Cllu;h w-rrllo i

|A

C[e0 + |l B = wllol ¢

Choose wh such that

a) (ih) = ¢ (ih) , o=t e Bl

¥n
4.57) b) y, (0)

[}

fI (0) ,
c) Wh(l) = f;(O) .
Then wh € Kh and wh is almost equal to Ihw, the piecewise linear interpolate of ¢
Then from (3.5),
(4.58) Il wh-‘pllo <l wh-Ihv’Ilo + |l Ihw-‘ﬁllo
<y =Lell ) + Choliell, .

But we see that

0 . h <x< (B-1)h,
x
(4.59) wh - Ihw = (2 = F) [f{(o)-fl(o)] ¢ 00<x<h,
x

[ 7T (H-l)][f;(o)-f2 @73 , (B=l)h < x<1,
so we have
(4.60) hy, - Loy <Cey .
Combining (4.53)~(4.60), we obtain

. 4 2 2 2

(4.61) Jlp,) <Cleg + h+ (h + Xk )/m + (07 + kK7)/h) . U
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